Thiomycalolides: New Cytotoxic Trisoxazole-Containing Macrolides Isolated from a Marine Sponge *Mycale* sp.¹

Shigeki Matsunaga, Yasuyuki Nogata, and Nobuhiro Fusetani*

Laboratory of Aquatic Natural Products Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan

Received October 29, 1997

Two new cytotoxic trisoxazole macrolides, thiomycalolides A (**2**) and B (**3**), have been isolated from a marine sponge *Mycale* sp. The structures were determined to be glutathione adducts of mycalolides A and B by interpretation of spectral data and chemical transformation. Thiomycalolides A and B are highly cytotoxic against P388 murine leukemia cells.

Mycalolides A, B (1), and C are potent actin-depolymerizing agents isolated from a marine sponge of the genus *Mycale*.^{2,3} They are closely related to ulapualides,⁴ kabiramides,⁵ and halichondramides⁶ isolated either from eggmasses of *Hexabranchus* nudibranchs or sponges of the genus *Halichondria*. These compounds are macrocyclic lactones encompassing three contiguous oxazoles and a side chain terminating in *N*-methylformamide. During our search for further cytotoxic constituents of *Mycale* sp., which contains mycalolides, we noticed the presence of metabolites related to mycalolides in a highly polar fraction,⁷ from which we have isolated two major cytotoxic components named thiomycalolides A (**2**) and B (**3**).

* To whom correspondence should be addressed. Tel.: +81-3-3812-2111 ext 5299. Fax: +81-3-5684-0622. E-mail: anobu@hongo.ecc.u-tokyo.ac.jp.

The EtOH extract of the sponge samples (5.0 kg wet weight) collected off the Kii Peninsula, 330 km southwest of Tokyo, was partitioned between ether and water; the aqueous phase was successively fractionated by ODS and Sephadex LH-20 chromatographies, preparative TLC, and ODS HPLC to afford thiomycalolides A (**2**, 3.3 mg)⁸ and B (**3**, 8.8 mg) as brownish powders.

The major constituent, thiomycalolide B, exhibited an ¹H NMR spectrum reminiscent of mycalolide B,² i.e., three oxazole singlets (δ 8.58, 8.52, and 7.95), doubled formamide signals (δ 8.29 and 8.05), five *O*-methyls (δ 3.40, 3.34 (\times 2), 3.32, and 3.26), doubled *N*-methyl (δ 3.06 and 2.97), an acetyl (δ 2.03), and five secondary methyls (\$ 0.98, 0.97, 0.96, 0.90, and 0.83). The COSY spectrum clearly showed that the $\Delta^{5,6}$ -olefin was missing, while $\Delta^{19,20}$ and $\Delta^{34,35}$ -olefins were present. Detailed interpretation of the COSY and HMQC spectra revealed that the C-7–C-9 and C-19–C-35 portions in **3** were identical with those of mycalolide B, whereas the $\Delta^{5,6}$ -olefin was replaced by a CHCH₂ unit [δ 3.57 (m; H5), 2.85 (dd, J = 8.7, 16.5 Hz; H6a), 3.14 (dd, J = 5.7, 16.9 Hz; H6b)]. The HMQC spectrum indicated that C-5 and C-6 resonated at 39.8 and 51.8 ppm, respectively, suggesting that C-5 was linked to a sulfur atom.⁹ In addition to the signals attributable to the mycalolide B skeleton, there were three isolated spin systems: C-10' [δ 3.68, d (J = 17.3 Hz); 3.70, d (J = 17.3 Hz)], C-7',8' [δ 4.54, dd (J = 5.0, 8.5 Hz); 3.02, dd (J = 5.2, 13.7 Hz); 2.83, dd (J = 8.8, 13.9 Hz)], and C-2',3',4' [δ 3.59, dd (J =6.2, 8.8 Hz); 2.06, (2H, m); 2.50, (2H, m)]. In addition, thiomycalolide B (3) showed an $(M + Na)^+$ ion at m/z1356 in its FABMS, 307 amu larger than mycalolide B.

The gross structure of **3** was determined by connecting the above-mentioned units on the basis of HMBC data (Scheme 1 and Table 1). The three isolated units were assigned as Gly, Cys, and Glu residues on the basis of intraresidual HMBC cross-peaks between the α -methine proton and the carbonyl carbon. HMBC data allowed not only the connection of these units as a glutathionyl group (*i*-Glu-Cys-Gly) but also the placement of this peptide at C-5 via the sulfur atom.¹⁰ Two carboxyls and one amino group must be terminal to satisfy the molecular formula.¹¹ Other structural features such as the presence of an *O*, *O*-dimethylglycerate on C-31, an acetate on C-33, and *O*-methyls on C-9, C-22, and C-26 were also confirmed by HMBC data.

CC: \$15.00 © 1998 American Chemical Society and American Society of Pharmacognosy Published on Web 04/23/1998

Marfey analysis¹² of the acid hydrolysate of **3** showed that both Glu and Cys residues had the L-configuration. Therefore, the gross structure of **3** was assigned as 5-glutathionyl mycalolide B.

To confirm the proposed structure, mycalolide B was treated with L-glutathione in the presence of NaHCO₃. Conjugate addition took place instantaneously, giving a 3:2 mixture of adducts, which were separated by ODS HPLC. The ¹H NMR spectrum of the minor product was identical with that of **3**, thus confirming the structure.^{13,14}

Thiomycalolide A (2) exhibited an ¹H NMR spectrum similar to that of **3**. The molecular ion in the FABMS was consistent with a glutathione adduct of mycalolide A, which was supported by COSY data. Due to the paucity of the sample, the HMBC spectrum of **2** was not good enough to detect all carbon signals. Therefore, the structure of **2** was determined by preparing the glutathione adduct of mycalolide A, whose ¹H NMR spectrum was identical with that of **2**.

Thiomycalolides A and B exhibit cytotoxic activity against P388 cells with an IC_{50} value of 18 ng/mL each. It is not known whether thiomycalolides are produced by an enzymatic reaction in the sponge or are simple adducts of co-occurring mycalolides and glutathione.

Experimental Section

General Experimental Procedures. NMR spectra were recorded on a JEOL A600 NMR spectrometer operating at 600 MHz for ¹H and 150 MHz for ¹³C. ¹H and ¹³C NMR chemical shifts were referenced to solvent peaks: $\delta_{\rm H}$ 3.30 and $\delta_{\rm C}$ 49.0 for CD₃OD. FAB mass spectra were measured on a JEOL JMX-SX102/SX102 tandem mass spectrometer using 3-nitrobenzyl alcohol as matrix. Amino acid analysis was carried out with a Hitachi L 8500-A amino acid analyzer. Optical rotation was determined on a JASCO DIP-1000 digital polarimeter in CH₃OH. UV spectra were recorded on a Hitachi 330 spectrometer.

Animal Material. Sponge samples were collected by hand using snorkeling at depths of 2-5 m in the Gokasho Bay on the Kii Peninsula, immediately frozen, and kept at -20 °C until processed. A voucher specimen (S3103) was deposited at the Laboratory of Aquatic Natural Products Chemistry, University of Tokyo. The sponge was identified as *Mycale* sp. by Professor P. R. Bergquist, University of Auckland, on the occasion of the structure elucidation of mycalolides $A-C.^2$ The sponge has many fine green fingers of a diameter 1-2 cm, arising from a single stalk. The sponge tissue is

soft and slimy. It grows on rocks or over dead stalks of brown algae and is found usually in a sunny place.

Extraction and Purification. The frozen sponge (5.0 kg wet weight) was chopped into small pieces and extracted with EtOH (3×2 L). The combined extracts were concentrated and partitioned between ether and water. The aqueous layer was separated by ODS flash chromatography with MeOH/H2O (15:85) and EtOH/ MeOH (1:1). The fraction eluted with EtOH/MeOH (1: 1) was further subjected to flash chromatography on ODS with a MeOH/H₂O system, and the active fraction was gel-filtered on Sephadex LH-20 (80% MeOH) followed by preparative TLC on Merck Kieselgel 60 F_{254} with CHCl₃/MeOH/H₂O (7:3:0.5) to furnish a mixture of related compounds as a brown gum, which was finally purified by reversed-phase HPLC on Capcell Pak with 70% MeOH containing 0.1 M NaClO₄. Desalting of major peaks on a short column of ODS afforded thiomycalolide A (2; 3.3 mg) and thiomycalolide B (3; 8.8 mg).

Thiomycalolide A (2): FABMS (matrix: 3-nitrobenzyl alcohol, positive) $[m/z \ 1238 \ (M + Na)^+]$; ¹H NMR $(CD_3OD) \delta 0.84$ (d, 3H, J = 6.9 Hz; 27-Me), 0.95 (d, 3H, J = 6.9 Hz; 23-Me), 0.99 (d, 3H, J = 6.9 Hz; 8-Me), 1.03 (d, 3H, J = 6.9 Hz; 33-Me), 1.07 (d, 3H, J = 6.9 Hz; 31-Me), 1.21 (m, 1H; H-28), 1.57 (m, 2H; H-25), 1.71 (m, 1H; H-28), 1.77 (m, 1H; H-27), 1.83 (m, 1H; H-4), 1.91 (m, 1H; H-4), 1.92 (m, 1H; H-23), 1.99 (s, 3H, 32-OAc), 2.09 (m, 2H; H-3'), 2.53 (m, 1H; H-21), 2.53 (m, 2H; H-4'), 2.54 (m, 1H; H-2), 2.56 (m, 2H; H-29), 2.58 (m, 1H; H-33), 2.66 (m, 1H; H-2), 2.68 (m, 1H; H-21), 2.87 (m, 1H; H-31), 2.88 (m, 1H; H-8'), 2.93 (m, 1H; H-6), 3.01 (3.10) (s, 3H, 35-NMe), 3.05 (m, 1H; H-8'), 3.06 (m, 1H; H-26), 3.18 (m, 1H; H-6), 3.41 (m, 1H; H-22), 3.46 (m, 1H; H-8), 3.62 (m, 1H; H-2'), 3.66 (m, 1H; H-5), 3.68 (m, 2H; H-10'), 4.50 (m, 1H; H-3), 4.55 (m, 1H; H-9), 4.57 (m, 1H; H-7'), 5.10 (m, 1H; H-32), 5.16 (5.09) (m, 1H; H-34), 5.25 (m, 1H; H-24), 6.47 (d, 1H, *J* = 16.6 Hz; H-19), 6.76 (7.13) (d, 1H, J = 14.2 Hz; H-35), 7.16 (m, 1H; H-20), 7.94 (s, 1H; H-11), 8.33 (8.09) (s, 1H, 35-NCHO), 8.50 (s, 1H; H-17), 8.56 (s, 1H; H-14).

Thiomycalolide B (3): $[\alpha]_D - 3.3^\circ$ (*c* 0.1, MeOH); UV (MeOH) λ_{max} 238 nm (ϵ 33 500); HRFABMS [*m*/*z* 1356.5898 (M + Na)⁺, C₆₂H₉₁O₂₃N₇SNa, Δ +11.4 mmu]; ¹³C and ¹H NMR data in CD₃OD at 300 K, see Table 1.

Acid Hydrolysis of Thiomycalolide B. A 100 μ g portion of 3 was dissolved in 0.5 mL of 5 N HCl and heated at 110 °C for 13 h. The solvent was evaporated in a stream of N₂, and the residue was redissolved in 1% HCl and subjected to standard amino acid analysis using a cation-exchange column with postcolumn derivatization with ninhydrin, which indicated the presence of Cys, Glu, and Gly.

HPLC Analysis of the Marfey Derivatives. To the acid hydrolysate of **3** were added 50 μ L of 1-fluoro-2,4-dinitrophenyl-5-L-alanine amide in acetone (10 mg/mL) and 100 μ L of 1 M NaHCO₃, and the mixture was kept at 80 °C for 3 min. To the reaction mixture were added 50 μ L of 2 N HCl and 200 μ L of 50% MeCN, and the mixture was analyzed by reversed-phase ODS-HPLC: linear gradient elution from H₂O–TFA (100:0.1) to MeCN–H₂O–TFA (60:40:0.1) in 60 min; detection with UV absorption at 340 nm.

					· · · · ·		
position	$^{1}\mathrm{H}\left(\delta\right)$	$^{13}C(\delta)$	HMBC	position	¹ Η (δ)	$^{13}C(\delta)$	HMBC
1		174.4		28	0.95 m	28.2	C: 27, 29
					1.42 m		C: 27, 29
2	2.53 m	43.5	C: 1, 3	29	1.40 m	31.2	C: 28, 31
	2.65 m		C: 1, 3		1.58 m		C: 28.31
3	4.40 m	68.0	. , .	30	5.06 dd (1.1. 7.3)	74.7	C: 28, 29, 31, 32, 36
4	1.79 m	43.7	C: 3	31	1.85 m	39.0	,,,,,
-	1.86 m	1011	C: 3		1100 111	0010	
5	3.57 m	39.8		31-Me	0.97 d (6.5)	10.0	C: 30, 31, 32
6	2.85 dd (8.7, 16.5)	51.8	C: 4, 5, 7	32	4.74 dd (2.3, 10.0)	78.4	C: 32-OAc
Ū	3.14 dd (5.7, 16.9)	0110	C: 4, 5, 7	0.2	1111 aa (210, 1010)		
7	0111 dd (011, 1010)	214.0	0, 1, 0, 1	32-0Ac		172.6	
8	3 45 m	48.5	C: 7 9 10 8-Me		2 03 s	21.0	
8-Me	0.96 d (6.5)	13.0	C: 7, 8, 9	33	2.62 m	38.0	C+ 31
9	4 43 d (6 9)	79.4	0. 1, 0, 0	33-Me	0 98 d (6 9)	19.8	$C \cdot 32 \ 33 \ 34$
9-0Me	3 32 \$	57.2	C· 9	34	5.06 dd (0.0)	112.0	C: 33-Me
0 01110	0.02 5	01.2	0. 0	01	(5, 14) dd (9, 6, 14, 6)	(112.0)	C: 33-Me
10		140.7		35	6 73 d (14 2)	132.0	C: 33 34 35-NMe
10		140.7		55	(7 10) d (14.2)	(126.5)	C. 55, 54, 55-1400
11	7 05 s	130.1		25-NMo	(7.10) u (14.0) 2 07 c	(120.5) 97.6	C: 35 35 NCHO
11	1.55 \$	155.1		33-1 VIVIE	(2.06) s	(22.5)	C. 33, 35-NCHO
19		157.0		25 NCHO	(3.00) S	(33.3)	
12		137.0		33-110110	8.29 S	(164.0)	
19		191.9		26	(8.03) \$	(104.0)	
13	9 5 9 -	131.3		30	201 dd(25 c5)	172.2	C: 26
14	8.38 S	140.4		37 27 OM	3.91 dd(3.5, 6.5)	81.3 50.0	$\begin{array}{c} C: & 30 \\ C: & 97 \end{array}$
15		100.0		37-OMe	3.40 S	59.0	$\begin{array}{c} C_{1} & 37 \\ C_{2} & 30 \\ \end{array} O M_{2} \end{array}$
16		130.9		38	3.59 dd (4.2, 10.8)	74.0	C: 36, 38-OMe
17	0 7 0 -	140.7	C 10	00 OM	3.63 dd (6.9, 10.4)	50 F	C: 36, 38-OMe
1/	8.52 S	140.7	C: 18	38-OMe	3.33 S	59.5	C: 38
10	(17)	104.5	C 01			170.0	
19	6.47 d (15.8)	118.2	C: 21 C: 10, 01	1		173.6	
20	7.22 m	141.6	C: 18, 21	Z	3.59 dd (6.2, 8.8)	55.5	C: 1, 3, 4
21	2.62 (2H, m)	34.0	C: 20, 22, 23	3	2.06 (2H, m)	27.8	C: T, Z, 4, 5
22	3.27 m	82.0	G 00	4	2.50 (2H, m)	33.3	C: 2, 3, 5
22-OMe	3.34 s	57.8	C: 22	5		175.2	
23	1.99 m	40.8	G 00 00 04	Cys		170.0	
23-Me	0.90 d (6.9)	10.0	C: 22, 23, 24	6		172.0	
24	5.19 dd (6.5, 10.4)	74.4	C: 1, 25	7	4.54 dd (5.0, 8.5)	55.4	C: 5', 6', 8'
25	1.40 m	31.8		8′	2.83 dd (8.8, 13.9)	32.6	C: 6', 5
	1.52 m			~ 7	3.02 dd (5.2, 13.7)		
26	3.02 m	82.8		Gly			
26-OMe	3.26 s	58.2	C: 26	9′		175.6	
27	1.79 m	35.3		10'	3.68 d (17.3)	44.2	C: 6', 9'
					3.70 d (17.3)		C: 6', 9'
27-Me	0.83 d (6.9)	16.2	C: 26, 27, 28				

Table 1. NMR Data for Thiomycalolide B (1)^{*a*} in CD₃OD

^a All spectra referenced to residual solvent signal of CD₃OD ($\delta_{\rm H}$ 3.30, δ C 49.0) at 27 °C and recorded at 600 MHz.

Cytotoxicity Assay. For cytotoxicity test see ref 15.

Preparation of 3 from 1. To a solution of mycalolide B (2 mg in 2 mL of MeOH) were added L-glutathione and 4 μ M NaHCO₃, and the mixture was stirred for 16 h. The reaction mixture was purified by ODS HPLC with MeOH/100 mM NaClO₄ in H₂O (7:3) followed by desalting on a short ODS column to furnish thiomycalolide B (0.7 mg) together with its C-8 epimer.

Preparation of 2 from Mycalolide A. Thiomycalolide A was prepared from mycalolide A as described above for the preparation of **3**. Two peaks in a ratio of 2:3 appeared in the HPLC, and the smaller peak coincided with **2** in the ¹H NMR spectrum. Although we did not characterize the larger peak, it was likely to be the C-8 epimer of **2**.

Acknowledgment. We are indebted to Professor Paul J. Scheuer of the University of Hawaii for reading this manuscript. This work was partly supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, and Culture of Japan and the JSPS, "Research for the Future Program" (JSPS-RAFT 96I00301).

References and Notes

- Bioactive Marine Metabolites. 81. Part 80: Matsunaga, S.; Wakimoto, T. J.; Fusetani, N. *Tetrahedron Lett.* 1997, *38*, 3763– 3764.
- (2) Fusetani, N.; Yasumuro, K.; Matsunaga, S.; Hashimoto, K. Tetrahedron Lett. 1989, 30, 2809–2812.
- (3) Saito, S.; Watabe, S.; Ozaki, H.; Fusetani, N.; Karaki, H. J. Biol. Chem. 1994, 269, 29710–29714.
- (4) Roesener, J. A.; Scheuer, P. J. J. Am. Chem. Soc. 1986, 108, 846– 847.
- (5) Matsunaga, S.; Fusetani, N.; Hashimoto, K.; Koseki, K.; Noma, M.; Noguchi, H.; Sankawa, U. *J. Org. Chem.* **1989**, *54*, 1360– 1363.
- (6) Kernan, M. R.; Molinski, T. F.; Faulkner, D. J. J. Org. Chem. 1988, 53, 5014–5020.
- (7) The FAB mass spectrum of this fraction suggested that it was a mixture of at least six related compounds. However, only two major compounds could be isolated due to the difficulty of separation and their instability.
- (8) Compound 2 contaminated with significant amounts of ODS inadvertently came out from the column that was used to remove NaClO₄. Due to the instability of the compound, further purification was not conducted.
- (9) Breitmaier, E.; Voelter, W. Carbon-13 NMR Spectroscopy, 3rd ed.; VCH: New York, 1990; pp 233–235.
- (10) The presence of the three amino acid residues was confirmed by the amino acid analysis of the acid hydrolysate of **3**.
- (11) The presence of three ionizable groups agreed with the high polarity of thiomycalolide B: silica gel TLC (CHCl₃/MeOH/H₂O 7:3:0.5) R_f value = 0.37.

- 666 Journal of Natural Products, 1998, Vol. 61, No. 5
- (12) Marfey, P. Carlsberg Res. Commun. 1984, 49, 591-596.
 (13) The major product is likely to be the C-8 epimer of 3, which was suggested by a downfield shift of H-9 (4.85 ppm) as well as an altered J_{8.9} value of 5.4 Hz. Coupling constants of H-3, H-4a, H-4b, and H-5a were almost identical for the two compounds, suggesting that the stereochemistry at C-5 of the two compounds was identical.

NP9704866